Android-приложение для поиска дешевых авиабилетов: play.google.com
Главная -> Задачи

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 [103] 104 105 106 107 108 109 110 111 112 113 114

136. Фишки можно расположить в следующем порядке:

137. Число различных расположений овец по загонам, при которых каждый загон либо оказывается занятым, либо находится на одной вертикали, горизонтали или диагонали по крайней мере с одной овцой, равно 47.

В таблице указаны все эти расположения, разобраться в которых поможет ключ из рисунка 1.

&

Это, разумеется, означает, что если вы поместите овец в загоны А и В, то существует 7 различных загонов, куда вы сможете поместить третью овцу, что дает 7 различных решений. Мы помним, что повороты и отражения не приводят к новым решениям.



Две овцы

Третья овца

Число решений

Аи В

С, Е, G, К, L, N или Р

Аи С

I, J, К или 0

Аи D

М, N или J

Аи F

J, К, L или Р

Аи G

Н, J, К, N, 0 или Р

Аи Н

К, L, N или 0

Аи 0

К или L

В и С

В и Е

F, Н, К или L

G, J, N или 0

В и G

К, L или N

В и Н

J или N

В и J

К или L

F иС

Если потребовать, чтобы по крайней мере один загон не находился на одной прямой ни с какой овцой, то число решений окажется равным 30. Если мы в каждом из этих 47 и 30 случаев соответственно будем считать новыми решения, получающиеся с помощью поворотов и отражений, то получим общее число решений, равное 560, что совпадает с числом способов, которыми овец можно разместить по трем загонам вообще без всяких условий. Я хочу отметить, что существуют три способа, какими можно двух овец расположить так, чтобы каждый загон либо оказался занятым, либо находился на одной прямой по крайней мере с одной овцой (см. рисунки 2, J и 4), но при этом в каждом случае овцы располагаются на одной прямой. Существуют лишь 2 расположения, при которых каждый загон оказывается либо занят, либо на одной прямой по крайней мере с одной овцой, но никакие две овцы не располагаются на одной прямой друг с другом (см. рисунки 5 и б). Наконец, существует лишь один способ, при котором три овцы располагаются таким образом, что по крайней мере один загон не находится ни на какой прямой ни с одной овцой и никакая овца не находится на одной прямой с другой овцой. По-



местите овец в клетки С, Е и L. Этим практически исчерпывается все, что следовало бы сказать по поводу такого приятного пасторального сюжета.

138. На рисунке показаны 4 фундаментально различных решения. В случае А мы можем изменить порядок

так, чтобы одиночная собака оказалась внизу, а остальные отстояли от нее на 2 клетки вверх. Точно так же мы можем использовать следующую справа вертикаль и обе из двух центральных горизонталей. Таким образом, случай А порождает 8 решений. Далее, решение В можно повернуть на 180° и расположить вдоль любой диагонали, что дает 4 решения. Аналогично случай С дает 4 решения. Расположение на прямой в случае D симметрично, так что повороты на 180° ничего нового не дадут, но собак можно помещать вдоль 4 различных прямых. Таким образом, мы получаем всего 20 различных решений.

139. Если бы древний архитектор расположил 5 своих полумесяцев так, как показано на рисунке, то каждая плитка оказалась бы под наблюдением (то есть на одной прямой) по крайней мере одного полумесяца и, кроме того, осталось бы место для квадратного ковра.



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 [103] 104 105 106 107 108 109 110 111 112 113 114



0.0238
Яндекс.Метрика