Android-приложение для поиска дешевых авиабилетов: play.google.com
Главная -> Задачи

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 [111] 112 113 114

ни, где требуется поменять местами черных коней с белыми. В задаче о «четырех лягушках» возможные направления ходов показаны прямыми линиями, дабы избавиться от необходимости объяснять неискушенным читателям природу ходов коня на шахматной доске. Но сразу же ясно, что две задачи эквивалентны. Центральной клеткой, разумеется, можно пренебречь, поскольку ни один конь не сможет в нее попасть. Теперь будем рассматривать грибки как пуговицы, а соединяющие их прямые как веревочки (см. случай Б). Тогда, расцепив веревочки, мы представим диаграмму в форме, показанной в случае В, где связи между пуговицами такие же, как и в случае Б, любое решение В приложимо к Б и А. Поставьте ваших белых коней на 1 и 3, а ваших черных - на 6 и 8 в диаграмме В, и простота решения станет совершенно очевидной. Вам нужно просто передвинуть коней по кругу в одном или в другом направлении. Сделайте приведенные выше ходы, и вы увидите, что не осталось ни малейших затруднений.

В случае Г я привел другую известную головоломку, впервые появившуюся в книге «Маленькие приключения Жерома Шарпа», изданной в Брюсселе в 1789 г. Поместите 7 шашек на 7 из 8 кружков следующим образом. Вы должны всегда ставить шашку на свободный кружок, а затем оттуда передвигать ее вдоль прямой, ведущей из этого кружка, в следующее свободное место (в любом направлении), где и оставлять шашку. Продолжайте действовать таким образом, пока все шашки не будут размещены. Помните, что вы ставите шашку на свободный кружок, а затем передвигаете ее на другой кружок, который тоже должен оказаться свободным. Теперь с помощью метода «пуговиц и веревочек» мы можем преобразовать нашу диаграмму, как в случае Д, после чего решение становится очевидным. «Всегда ходите на кружок, с которого вы передвигали шашку на предыдущем ходу». Это, конечно, не единственный способ, но простейшее решение, которое приходит на ум.

Существует несколько головоломок в этой книге, при решении которых данный метод может оказаться полезным.



169. Наиболее трудное место, которое должен выяснить для себя читатель, приступая к данной головоломке, состоит в том, чтобы решить, являются ли заштрихованные шашки (те, что находятся на правильных местах) просто «пустышками», не имеющими существенного отношения к делу. Из ста человек девяносто девять придут к выводу, что совершенно бесполезно передвигать какую-то из этих шашек, но здесь-то они и окажутся не правы.

Наикратчайшее решение в случае, если не передвигать заштрихованные шашки, состоит из 32 ходов. Однако головоломку удается решить всего за 30 ходов. Трюк состоит в том, чтобы передвинуть 6 (или 15) на втором ходу и вернуть ее на место на девятнадцатом. Полное решение таково: 2, 6, 13, 4, 1, 21, 4, 1, 10, 2, 21, 10, 2, 5, 22, 16, 1, 13, 6, 19, и, 2, 5, 22, 16, 5, 13, 4, 10, 21. Всего 30 ходов.

170. Существует 80 различных расположений, образующих правильный путь коня, но только 40 из них можно достичь без того, чтобы два человека одновременно оказывались в одной камере. Наибольшее число людей, не участвующих в перемещениях, равно 2, и хотя путь коня можно устроить таким образом, чтобы оставить в

13.8, ЗШ

6;i;io;i5

8,5 из"

1 14 7 10

13, 2/, 9 Ym,

исходных положениях 7 и 13, S и 13, 5 и 7 или 5 и 13, следующие четыре расположения, где неподвижными остаются 7 и 13, - единственные, которых можно достичь



при заданных условиях. Следовательно, нужно найти наименьшее число ходов, приводящее к одному из этих расположений. Это, разумеется, нелегко сделать, и нельзя предложить никаких четких правил, приводящих к нужному ответу. Во многом здесь дело сводится к личному мнению, терпеливому экспериментированию и острому глазу по отношению к расположению и поворотам!

Кстати сказать, расположения В можно добиться за 66 ходов, действуя следующим образом: ]2, 11, 15, 12, 11, 8, 4, 3, 2, 6, 5, 1, 6, 5, 10, 15, 8, 4, 3, 2, 5, 10, 15, 8, 4, 3, 2, 5, 10, 15, 8, 4, 12, 11, 3, 2, 5,

10, 15, 6, 1, 8, 4, 9, 8, 1, 6, 4, 9, 12, 2, 5, 10, 15,

4, 9, 12, 2, 5, 3, 11, 14, 2, 5, 14, П = 66 ходов. Хотя это самое короткое решение, которое мне удалось найти, и я думаю, что более короткого не существует, я не могу это утверждать со всей определенностью. Наиболее привлекательным выглядит, конечно, расположение А, но вещи не таковы, какими кажутся, и достигнуть В оказывается легче всего.

Если бы можно было оставить свободной левую нижнюю камеру, то подошло бы следующее решение в 45 ходов, принадлежащее Р. Эрлику: 15, 11, 10, 9, 13, 14,

11, 10, 7, 8, 4, 3, 8, 6, 9, 7, 12, 4, 6, 9, 5, 13, 7,

5, 13, 1, 2, 13, 5, 7, 1, 2, 13, 8, 3, 6, 9, 12, 7, 11, 14, 1, и, 14, 1. Но при этом передвигается каждый человек.

171. Сначала следует остановить свой выбор на наиболее обещающем пути коня, а затем попытаться достичь данного расположения за наименьшее число ходов. Я твердо держусь того мнения, что наилучшим будет расположение, представленное на рисунке, где, как можно заметить, каждое последующее число получается из предыдущего ходом коня, а пять собак {1, 5, 10, 15 и 20) никогда не покидают свои первоначальные конуры.

К этому расположению можно прийти за 46 ходов: 16-21, 16-22, 16-23, 17-16, 12-17, 12-22, 12-21, 7-12, 7-17, 7-22, 11-12, 11-17, 2-7, 2-12, 6-11, 8-7, 8-6, 13-8, 18-13, 11-18, 2-17, 18-12, 18-7, 18-2, 13-7, 3-8, 3-13, 4-3, 4-8, 9-4, 9-3, 14-9, 14-4, 19-14, 19-9, 3-14, 3-19, 6-12, 6-13, 6-14, 17-11, 12-16, 2-12, 7-17, 11-13, 16-18 = 46 ходов. Я, конечно, не могу категорически утверждать, что не существует решения с меньшим числом ходов, но



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 [111] 112 113 114



0.0069
Яндекс.Метрика