Android-приложение для поиска дешевых авиабилетов: play.google.com
Главная -> Задачи

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 [45] 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114


добирается до цели на десятый день, поскольку соскальзывания вниз не играют роли после того, как она достигнет верха.

Давайте, однако, рассмотрим первоначальный вариант этой истории. Жили-были два философа. Однажды они прогуливались в своем саду, когда один из них обнаружил весьма респектабельную представительницу вида Helix aspersa, настоящую альпинистку, совершающую рискованное восхождение по стене высотой в 20 футов. Изучая след, этот джентльмен установил, что улитка каждый день поднимается на 3 фута, а каждую ночь спит и соскальзывает вниз на 2 фута.

- Прошу, скажи мне, - спросил у него приятель, - сколько времени потребуется леди Улитке, чтобы добраться до верхнего края стены и спуститься вниз по другой стороне? Край стены, как ты знаешь, очень острый, так что, добравшись до него, она сразу же начнет спускаться, причем теперь уже за день она будет опускаться на такое же расстояние, на какое раньше поднималась, а ночью будет спать и соскальзывать вниз, как и раньше.

Быть может, мои читатели вместе с приятелями-философами захотят подсчитать точное число дней. Разумеется, в головоломках такого типа предполагается, что сутки делятся пополам на 12 дневных и 12 ночных часов.



107. Четыре принца. Владения одного восточного монарха представляли собой правильный квадрат. Однажды он обнаружил, что его четыре сына не только чинят козни друг против друга, но тайно бунтуют и против него самого. Выслушав своих советников, король решил, что не стоит зато-


чать принцев в темницу, и распорядился отправить их в четыре угла страны, где каждому вьщелялась треугольная территория равной площади, границы которой принц не смел пересекать под страхом смерти. Королевский топограф столкнулся, естественно, с огромными трудностями, вызванными дикой природой этого края. В результате оказалось, что хотя каждому принцу и была выделена территория равной площади, но все четыре треугольных района оказались различны по форме; получилось нечто вроде того, что показано на рисунке. Головоломка состоит в том, чтобы привести длины всех сторон для каждого из четырех треугольников, причем эти длины должны выражаться наименьшими возможными целыми числами. Другими словами, требуется найти (с наименьшими возможными числами) четыре рациональных прямоугольных треугольника равной площади.

108. Платон и девятки. Как в древности, так и в наше время числу 9 приписывались мистические свойства. Мы знаем, например, что было девять муз, девять рек Гадеса и что Вулкан девять дней падал с небес. Далее существует тайное поверье, что человека делали девять портных; известно также, что есть девять планет, что у кошки девять жизней (а иногда и девять хвостов).

Большинство людей сталкивалось с некоторыми странными свойствами числа 9 в обыкновенной арифме-



тике. Например, выпишите какое-нибудь число, содержащее столько цифр, сколько вы пожелаете, сложите эти цифры и вычтите полученную сумму из первого числа. Сумма цифр в этом новом числе всегда будет кратна девяти.

Жил когда-то в Афинах богатый человек, который был искусен в арифметике и имел склонность к мистике. Он был глубоко убежден в магических свойствах числа 9 и постоянно наведывался в рощи Академии, надоедая бедному Платону со своими абсурдными идеями относительно того, что он называл «счастливым числом». Однако Платон придумал способ, как от него избавиться. Когда этот провидец попытался однажды втянуть его в долгую дискуссию на свою излюбленную тему, философ оборвал его замечанием:

- Послушай-ка, приятель, - это наиболее точный перевод фамильярного обращения с древнегреческого, -


когда ты принесешь мне решение вот этой небольшой тайны, касающейся трех девяток, я буду рад тебя выслушать и даже готов записать тебя на свой фонограф для будущих поколений.

Затем Платон указал, как вы видите на рисунке, на то, что три девятки можно расположить в виде дроби та-



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 [45] 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114



0.0079
Яндекс.Метрика