Android-приложение для поиска дешевых авиабилетов: play.google.com
Главная -> Задачи

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 [51] 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

на другой диагонали, то это будет считаться другим расположением, аналогичным образом обстоит дело и с расположениями, получающимися из некоторого расположения с помощью поворотов.

123. Четыре льва. Эта головоломка состоит в том, чтобы выяснить, сколькими различными способами можно расположить четырех львов так, чтобы при этом на любой горизонтали и вертикали находилось не более чем по одному льву. Отражения и повороты не считаются различными. Так, в приведенном на рисунке примере рас-


положение львов вдоль второй диагонали мы не будем считать отличным от исходного. Действительно, если вы поднесете второе расположение к зеркалу или повернете его на четверть полного оборота, то получите первое расположение. Это простая маленькая головоломка, но она требует некоторого внимания.

124. Незащищенные слоны. Расположите наименьшее число слонов на обычной шахматной доске таким образом, чтобы каждая клетка оказалась либо занятой, либо под угрозой нападения. Можно заметить, что ладья в этом отношении более могуча, чем слон, ибо, где бы она ни располагалась, под ее угрозой всегда находятся 14 клеток, тогда как под угрозой слона может находиться 7, 9, 11 или 13 клеток в зависимости от того, на какой диагонали он стоит. Здесь нелишне напомнить, что, гово-



ря о диагоналях шахматной доски, мы не ограничиваемся двумя большими диагоналями, соединяющими противоположные ее углы, а имеем в виду и более короткие прямые, параллельные этим большим диагоналям. Читателю стоит хорошенько это запомнить, дабы избежать недоразумений в будущем.

125. Защищенные слоны. Сколько теперь потребуется слонов, чтобы каждая клетка оказалась либо занятой, либо под угрозой, а каждый слон находился под защитой другого слона?

126. Собрание слонов. Наибольшее число слонов, которых можно поместить на одной шахматной доске так, чтобы ни один слон не атаковал другого, равно 14. На рисунке показано простейшее расположение такого типа.

Фактически на квадратной доске любого размера число слонов, которых можно расположить так, чтобы они не атаковали друг друга, всегда на 2 меньше удвоенного количества клеток, расположенных вдоль одной из ее сторон. Интересная головоломка состоит в том, чтобы определить, сколькими различными способами 14 слонов можно расположить на обычной шахматной доске так, чтобы они не атаковали друг друга. Я приведу крайне простое правило, позволяющее определить число таких способов для доски любого размера.

6 Генрн Э. Дьюдени



127. Восемь ферзей. Ферзь на шахматной доске - куда более сильная фигура, чем слон. Если вы поместите ферзя на один из четырех квадратов в центре доски, то под его угрозой окажется не менее чем 27 других клеток, а


если вы попытаетесь запрятать его в угол, то все равно он будет атаковать 21 клетку. Восемь ферзей можно расположить на доске таким образом, чтобы ни один из них не атаковал другого. Существует старая головоломка (впервые предложенная Науком в 1850 г.), которая состоит в том, чтобы определить число различных способов, какими это можно сделать. Один такой способ приведен на рисунке, а всего число существенно различных способов равно 12. Если же мы будем считать повороты и отражения различными способами, то из этих 12 образуется 92 способа. Расположение, приведенное на рисунке, обладает определенной симметрией. Если вы перевернете страницу вверх- ногами, то получите то же самое расположение, однако если вы повернете доску так, чтобы внизу оказалась одна из боковых сторон, то получите расположение, отличное от исходного. Если вы зеркально отразите эти 2 расположения, то получите еще 2 способа. Далее: все другие 11 расположений несимметричны, и, следовательно, из каждого из них с помощью таких поворотов и отражений получается по 8 способов. Таким образом, становится понятно, почему 12 существенно различных ре-



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 [51] 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114



0.0079
Яндекс.Метрика