Android-приложение для поиска дешевых авиабилетов: play.google.com
Главная -> Задачи

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 [54] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

тикали или диагонали? Разумеется, в каждую клетку можно наклеивать лишь одну марку. Вероятно, читатель, заглянув в решение, обнаружит, что его провели так же, как он сам проводил языком по маркам. Скорее всего до максимума ему не хватит двух пенсов. Один мой приятель спросил в почтовом ведомстве, как следует наклеивать марки, но там его послали к чиновнику по таможенным и акцизным сборам, который направил его в страховое агентство, где ему посоветовали обратиться в некое общество, там в свою очередь его послали ... так он и ходит до сих пор.

136. Сорок девять фишек. Сможете ли вы расположить 49 изображенных здесь фишек в виде квадрата так, что-

®®®@@®® ©@@@@@@

бы при этом никакие две одинаковые буквы и шжакие две одинаковые цифры не оказались на одной вертикали, горизонтали или диагонали? Здесь под «диагоналями», как и на шахматной доске, понимаются прямые, параллельные любой из двух больших диагоналей.

137. Три овцы. У фермера было 3 овцы и 16 загонов, отделенных друг от друга жердями, как показано на рисунке. Сколько существует различных способов, которыми фермер может поместить этих овец в отдельные загоны так, чтобы каждый загон оказался либо занятым,



либо расположенным на одной вертикали, горизонтали или диагонали по крайней мере с одной овцой? Я привел одно расположение, удовлетворяющее этим условиям. Сколько других расположений сумеете найти вы? Ре-щения, полученные с помощью поворотов и отражений из какого-то одного решения, мы не считаем отличны-

<г5

ми от него. Читатель может рассматривать овцу как ферзя. Тогда задача будет сводиться к тому, чтобы расположить трех ферзей таким образом, чтобы каждая клетка была либо занята, либо атакована по крайней мере одним ферзем, причем это следует сделать максимальным числом способов.

138. Головоломка с пятью собаками. В 1863 г. К. Ф. де Яниш первым стал обсуждать «Головоломку о пяти ферзях», где требовалось расположить 5 ферзей на шахматной доске так, чтобы каждая клетка либо оказалась занятой, либо находилась под угрозой нападения. Яниш показал, что если ни одному ферзю нельзя атаковать другого ферзя, то существует 91 способ размещения пяти ферзей, если не различать способы, полученные из данного с помощью поворотов и отражений. Если ферзям разрешается атаковать друг друга, то здесь существуют сотни способов.

На рисунке условно изображены 64 конуры. Можно заметить, что в 5 из них сидит по собаке, а при более пристальном взгляде обнаруживается, что каждая конура находится на одной прямой по крайней мере с одной из собак (по горизонтали, вертикали или диагонали). Возьмите любую конуру, какую пожелаете, и вы увиди-



le, что всем удастся провести из нее прямую в одном из грех упомянутых направлений, проходящую через собаку. Головоломка состоит в том, чтобы переставить 5 собак и определить, сколькими различными способами их можно разместить по 5 конурам вдоль прямой так, чтобы каждая конура всегда была на одной прямой по крайней

мере с одной собакой. Размещения, получающиеся с помощью поворотов и отражений, мы здесь считаем различными.

139. Пять византийских полумесяцев. Когда Филипп Македонский, отец Александра Великого, при осаде Византии столкнулся с громадными трудностями, он послал своих людей сделать подкоп под стены. Однако замыслам полководца не суждено было осуществиться, ибо едва операция началась, как в небе появился месяц и, осветив все вокруг, выдал план Филиппа противнику. Византийцы, естественно, ликовали и в знак благодарности воздвигли храм в честь Дианы, а полумесяц стал с тех пор символом страны. Перед статуей Дианы квадратный участок пола был выложен 64 драгоценными плитками. Все они были однотонными, за исключением пяти, на которых был изображен полумесяц. Эти пять плиток по неким оккультным причинам были размещены таким об-



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 [54] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114



0.0401
Яндекс.Метрика