Android-приложение для поиска дешевых авиабилетов: play.google.com
Главная -> Задачи

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 [87] 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

в каждом углу находится дробная сумма, тогда как требуемая сумма вдоль каждого из восьми направлений равна целому числу шиллингов.

68. Первая из этих головоломок основана на аналогичном принципе, хотя на самом деле она много проще, ибо условие, что девять марок должны быть различными, делает простым их выбор, хотя для того, чтобы их правильно разместить, требуется немного подумать и поэкспериментировать, прежде чем будет обнаружена закономерность, управляющая дробями в углах. На рисунке вы видите решение.

я привожу и решение второй головоломки с марками. Сумма вдоль каждой вертикали, горизонтали и диагонали равна 1 шиллингу 6 пенсам. В одном квадратике нет марок, и условием это не запрещено. В обращении

находятся марки следующего достоинства: -d.. Id., 2 d., 2d., 2 d., Ы, Ad., 5d., 6d., 9d., lOd, Is., 2s., 6d., 5s.,

\0s., £ 1 и £2.

В первом случае числа образуют арифметическую

прогрессию: 1, 1, 2, 3, 3, 4, 4, 5. Но из любых



девяти чисел можно образовать магический квадрат, если их удается расположить следующим образом:

1 2 3

7 8 9 13 14 15,

где разности по горизонталям все одинаковы так же, как и разности по вертикалям, хотя последние и не обязаны совпадать с первыми. Именно так обстоит дело в случае второго рещения, где числа можно записать в виде:

О 1 2 5 6 7 10 11 12. Точно так же в решении задачи 67 с монетами числа в шиллингах равны

2 2- 3 2

Если должно быть девять различных чисел, то О может появиться один раз (как в решении задачи 22). И все же можно построить квадрат с отрицательными числами следующим образом:

-2 -1 О 5 б 7 12 13 14.



69. Как совершенно верно заметил Профессор, су-инсгиуст только одно решение (если не считать симметричного) этой головоломки. На другие бокалы прыгают следующие лягушки: Джордж в третьем (сверху) горизонтальном ряду; Чанг - искусно выполненное существо в конце четвертого ряда и Вильгельмина - прекрасное создание в седьмом ряду. Джордж прыгает вниз

®

®

®-

®.

®

о ®

®

©

® о

на второй бокал седьмого ряда; Чанг, который из-за хронического ревматизма может совершать лишь небольшие прыжки, перемещается довольно неохотно на бокал, расположенный непосредственно над ним (восьмой в третьем ряду), тогда как Вильгельмина со всем пылом юности и пола совершает отличный и сложный прыжок на четвертый бокал четвертого ряда. При новом расположении, как видно из рисунка, никакие две лягушки не находятся на одной вертикали, горизонтали или диагонали.

70. Эта головоломка довольно трудна, хотя, как заметил Профессор, когда Хокхерст нашел решение, «она как раз из тех, которые решаются... с первого взгляда», если повезет. И все же если посмотреть на изящное симметричное решение, то оно выглядит невероятно простым.

Можно заметить, что Ромео добирается до балкона Джульетты, посетив каждый дом только по одному разу и сде-



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 [87] 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114



0.0263
Яндекс.Метрика