Android-приложение для поиска дешевых авиабилетов: play.google.com
Главная -> Задачи

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 [96] 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

риаций; следовательно, его вклад в общее количество сводится к одному пути.

2 двухлинейных направления по 3 пути 6

1 трехлинейное направление по 1 пути 1

1 трехлинейное направление по 9 путей 9

2 четырехлинейных направления по 6 путей 12 2 четырехлинейных направления по 18 путей 36 6 пятилинейных направлений по 6 путей 36 2 пятилинейных направления по 18 путей 36 2 шестилинейных направления по 36 путей 72 12 семилинейных направлений по 36 путей 432

Итого.................640

Таким образом, мы видим, что всего существует 640 различных путей, что и служит правильным ответом на головоломку.

104. Каждая из трех частей, очевидно, по длине была равна якорной цепи. Но Саймон, полагая, что разрезы проходили трансверсально (то есть поперек), настаивал на том, что длина змея составляла девять якорных цепей. Шкипер, однако, объяснил (и здесь он был столь же правдив, как и в остальной части своего рассказа), что он разрубил змея вдоль - точно от кончика носа до кончика хвоста! Полная длина, следовательно, составляла лишь три якорных цепи, столько же, сколько и у каждой части по отдельности. Саймона не просили назвать точную длину змея, а лишь какой она должна быть. Она должна быть равной по меньшей мере длине трех цепей, хотя может быть (оставляя без внимания утверждение шкипера) равной любому числу до девяти цепей включительно в зависимости от того, как проведены разрезы.

105. Если бы всего было 12 леди, то они обменялись бы между собой 132 поцелуями, а на долю помощника священника осталось бы 12 поцелуев (6 раз поцеловал он, и 6 раз - его). Следовательно, из 12 леди 6 должны быть его сестрами. Следовательно, если 12 выполняют работу за 4,5 месяца, то шестеро выполнят ее за вдвое большее время, то есть время работы увеличится на 4,5 месяца - это и есть правильный ответ.



На первый взгляд имеется некая двусмысленность в словах «все перецеловали друг друга, за исключением, разумеется, самого застенчивого молодого человека». Не означает ли это, что все леди нескромно поцеловали помощника священника и не были в свою очередь поцелованы им (исключая сестер)? Нет, ибо в этом случае мы обнаружили бы, что среди 12 леди нет ни одной сестры, а это противоречит условиям задачи. Если же, наоборот, у кого-то возникнет подозрение, что сестры не целовали своего брата, тогда как он их поцеловал, то я отвечу на это, что в таком случае все 12 леди оказались бы сестрами. А упоминание о том, что леди без сестер могли бы выполнить данную работу, исключает такую возможность.

106. В конце семнадцатых суток улитка взберется на 17 футов, а к концу восемнадцатого дня доберется до верхнего края и тут же заснет и начнет соскальзывать вниз и к концу восемнадцатых суток окажется на другой стороне в 2 футах от верхнего края стены. За сколько она спустится на оставшиеся 18 футов? Если улитка соскальзывает на 2 фута ночью, то днем, взбираясь вверх, она, очевидно, преодолевает тенденцию этого соскальзывания. Гребя вверх по течению реки, мы преодолеваем это течение, тогда как двигаясь по реке вниз, мы используем течение, которое нам помогает. Если улитка днем может подняться на 3 фута, преодолевая тенденцию к соскальзыванию на 2 фута, то, двигаясь по полу, она может при тех же усилиях за день пройти расстояние в 5 футов. Когда же она опускается вниз, то к этим 5 футам надо добавить еще 2 фута за счет соскальзывания. Таким образом, на пути вниз за день она проходит 7 футов, а если к ним добавить 2 фута ночного соскальзывания, то получится, что за сутки улитка спускается на 9 футов. Значит, на преодоление 18 футов потребуется двое суток, а на все путешествие - ровно 20 суток.

107. Когда Монтукла в своем издании книги Оза-нама «Recreations in Mathematics» заявил, что «су-ществ.ует не более трех равновеликих прямоугольных треугольников с целыми сторонами, но имеется сколько угодно таких прямоугольных треугольников с рациональными сторона.ми», он, как это ни странно, упу-



стил из виду, что если вы приведете рациональные длины сторон к общему знаменателю и удалите этот знаменатель, то получите значения целых сторон искомых треугольников.

Каждому читателю стоит знать, что если мы возьмем любые два числа m и и, то т- + nf- - гР- vi 2тп будут тремя сторонами рационального прямоугольного треугольника. Здесь W и « называются производящими числами. Чтобы образовать три таких равновеликих треугольника, мы воспользуемся следующими простыми соотношениями, где т - большее число:

тп -Ь i-if- + tf = а, т-п = Ь, 2тп + с.

Теперь, если мы образуем три треугольника с помощью трех пар порождающих чисел, avib, аис, анЬ + + с, то их площади окажутся равными. Это та самая небольшая задача, о которой Льюис Кэрролл писал в своем дневнике: «Сидел прошлой ночью до 4 часов утра над соблазнительной задачей, которую мне прислали из Нью-Йорка, «найти три равновеликих прямоугольных треугольника с рациональными сторонами». Я нашел два... но не смог найти трех!»

Сейчас я приведу формулу, с помощью которой мы всегда по заданному рациональному прямоугольному треугольнику можем найти рациональный прямоугольный треугольник равной площади. Пусть z - гипотенуза, b - основание, h - высота, а - площадь данного треугольника; тогда все, что мы должны сделать, - это образовать рациональный прямоугольный треугольник с помощью производящих чисел а 4а и привести каждую сторону к знаменателю 2z{lP-- h), и мы получим требуемый ответ в целых числах.

Ответ в наименьших целых числах на нашу головоломку такой:

Первый принц.................... 518 1320 1418

Второй принц...................... 280 2442 2458

Третий принц...................... 231 2960 2969

Четвертый принц................ 111 6160 6161

То есть треугольника, длины сторон которого выражаются рн-циональными числами. - Примеч. пер.



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 [96] 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114



0.0065
Яндекс.Метрика